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ABSTRACT

We present a novel solution to the inter-camera color calibration
problem, which is very important for multi-camera systems. We
propose a distance metric and a modeling function to evaluate the
inter-camera radiometric properties using color histograms. In-
stead of depending on the shape assumptions of brightness transfer
function to find separate radiometric responses, we derive a rela-
tive non-parametric non-linear color distortion model function of
each camera combination. Our method is based on cross-correlation
matrix analysis and dynamic programming. The model function
enables effective compensation for lighting changes and radiomet-
ric distortions, which cannot be done with conventional distance
metrics. Furthermore, we show that our metric can be reduced to
other commonly used metrics with suitable simplification. Our
simulations prove the effectiveness of the proposed method for
compensation of even severe inter-camera color distortion.

1. INTRODUCTION

A major problem of multi-camera systems is the color calibra-
tion of cameras. Such a system may contain identical cameras
that are operating under various lighting conditions, e.g. indoor
cameras under fluorescent/neodmyium lamps or outdoor cameras
in bright/overcast daylight, etc., and different brand cameras that
have dissimilar radiometric responses. Even between identical
cameras working that have same geometrical properties and work-
ing under the same lighting, it is possible to have color deviations
due to deficiencies of electronics and optical materials. Images of
object acquired under these variants usually show dissimilar color
characteristics, and this makes the correspondence, recognition,
and other related computer vision tasks more challenging. Remote
sensing, image retrieval, face identification are among the other
applications depend upon the accurate and efficient color correc-
tion methods.

In the past few years, many algorithms were developed to
compensate radiometric distortions. One way to recover the ra-
diometric response by taking an image of a uniformly illuminated
color chart of known reflectance. Unfortunately, a uniform illu-
mination may not be possible outside of a controlled environment,
and temperature changes can significantly effect the surface re-
flectance. Instead of charts, some methods use registered images
of a scene taken with different exposures [1], [2], [3]. However
these approaches require additional assumptions (e.g. smoothness,
gamma curve, polynomials, etc.) on the shape of the radiometric
response function. To overcome these shortcomings, we use color
histograms. Histograms are widely accepted as simple and use-
ful probabilistic models. The use of color histograms has been

experimented in illumination compensation for satellite imagery,
similarity and region searches [4], object searches, as well as im-
age and video retrieval, video indexing and summarization. In the
following section, we explain the proposed setup in detail.

2. CALIBRATION SETUP

The calibration setup computes pair-wise inter-camera color com-
pensation functions that transfer the color histogram response of
one camera to the other as illustrated in Fig. 1. First, videos of
the same scene or objects are recorded for each camera into the
corresponding databases. Without loss of generality, let assume
we have two cameras Ca and Cb. We obtain image databases
Va : fIa1 ; ::; IaKg and Vb : fIb1 ; ::; IbKg such that Iak and Ibk
where 1 � k � K correspond to the same scene or objects. Then,
for each image pair, e.g. Iak ,Ibk, we extract the separate channels
color histograms hak;ch, hbk;ch where ch : red; green; blue. We
will drop the last index in the remaining of this paper for sim-
plicity. Using the histograms hak; h

b
k of each image pair in the

databases, we compute cross-correlation matrices Ca;b
k . An aggre-

gated cross-correlation matrix Cis calculated by averaging these
matrices C = 1=K

PK

k=1C
a;b
k . Although the scaling factor can

be neglected in extraction of a minimum cost path as explained in
the following section, it is included to enable the use of minimum
cost as a distance metric. Using matrix C, a minimum cost path
is found by dynamic programming. This path models the compen-
sation function between two histograms. Thus, for a pair of color
cameras, three model functions establish the radiometric relation.
Some examples of the different scenarios of light-camera combi-
nations are given in Fig. 1-c. Since model functions are transitive,
by using model functions from Ca to Cb and from Cb to Cc, we can
find the radiometric relation between Ca and Cc.

A histogram, h, is a vector [h[0]; : : : ; h[M ]] in which each
bin h[m] contains the number of pixels corresponding to the color
range of m in the image I where M is the total number of the
bins. In other words, it is a mapping from the set of color vectors
to the set of positive real numbers R+. The partitioning of the
color mapping space can be regular with identical bins, as well as
it can be irregular if the target distribution properties are known.
In this paper, we assume that h[m] are identical and the histogram
is normalized such that

PM

m=0
h[m] = 1.

3. CROSS-CORRELATION MATRIX AND MODEL
FUNCTION

We define a cross-correlation matrix C between two histograms
as the set of positive real numbers that represent the bin-wise mu-
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Fig. 1. (a) A multi-camera setup, which can contain one ref-
erence and several uncalibrated cameras, generates camera-wise
databases of videos. After obtaining frame-wise histograms and
computing the total cross-correlation matrix, a minimum cost path
is found by dynamic programming. This path is converted to an
inter-camera model function. (b) Using the model function ob-
tained in the previous stage, the output of the second camera is
compensated to match its color distribution with the reference
camera. (c) Some possible scenarios: single-light different type
camera setup, and different-light identical camera setup.

tual distances. Let h1[m] and h2[m] be two histograms with m =
1; : : : ;M and m = 1; : : : ; N i.e. the number of bins are not nec-
essarily same. The cross-correlation matrix is

CM�N = h1 
 h2

=

2
64

c11 c12 : : : c1N
c21 : :
: : :

cM1 : : : cMN

3
75 (1)

where each element cmn is a positive real number such that cmn =
d(h1[m]; h2[n]) where d(�) � 0 is a distance norm which satisfies
the triangle-inequality.

Theorem 1 The sum of the diagonal elements of C represents the
bin-by-bin distance with given norm d(�) for the histograms have
equal number of bins M = N .

For example, by choosing the distance norm as L1, i.e. the mag-
nitude norm, the sum of the diagonals becomes the magnitude dis-

Fig. 2. The relation of minimum cost path to model function f(j).

tance between a pair of histograms

MX
m

cmm =

MX
m

jh1[m]� h2[m]j = dL1(h1; h2): (2)

Let p : f(m0; n0); :::; (mi; ni); :::; (mI ; nI)g represents a mini-
mum cost path (defined in the next section) from the c11 to cMN in
the matrix C, i.e. the sum of the matrix elements on the connected
path p gives the minimum score among all possible routes. The
total length of the path cannot be more than the sum of the lengths
of the histograms

p
M2 +N2 � I �M +N (3)

We define a cost function for the path as g(pi) = cmi;ni
where

pi denotes a path element (mi; ni). We define a mapping i ! j
from the path indices to the projection onto the diagonal of the
matrix C, and a model function f(j) that gives the distance from
the diagonal with respect to the projection j. The model function
is a mapping from the matrix indices to real numbers

(mi; ni)
t�! f(j) (4)

where j = 1; : : : ; J . Depending on the shape of the path, these
mappings may not be one-to-one. From Fig.2, the angle between
the diagonal and the current path index is

� = tan�1
�
M

N

�
� tan�1

�
mi

ni

�
(5)

We may assume M = N , i.e. tan�1(M
N
) = �

4
. Then, the magni-

tude of the projection j is

j = jpij � cos � =
mi + nip

2
(6)

Thus, the model function f(j) becomes

f(j)2 =
1

2

�
m2
i + n2i

�
+mini (7)

The f(j) is negative if mi < ni. The mapping t in equation 4
is decomposed into two functions tm(mi) = ni and tn(ni) =
mi such that they give the minimum cost path as a function of
histogram index. Their derivatives with respect to both indices
represent the amount of warping of the bins

@tm(mi) = tm(mi)� tm(mi � 1) (8)

@tn(ni) = tn(ni)� tn(ni � 1) (9)
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Fig. 3. (a) Minimum cost path for the same histograms, (b) and
warped histograms. With respect to warping direction, the model
function f(j) becomes negative or positive.

Definition The cross-correlation distance (CCD) is the total cost
along the model function (CCF)

dCC(h1; h2) =
IX
i=0

jg(mi; ni)j (10)

An alternative definition of the above distance metric weights the
model function with the current cost

dCC(h1; h2) =

JX
j=0

jf(j)jg((mi; ni)) (11)

The distance can also be measured as the length of the path

dCC(h1; h2) = J: (12)

4. DETERMINATION OF MINIMUM COST PATH

Given two histograms, the question is what is the best alignment
of their shapes and how can the alignment be determined? We re-
duce the comparison of two histograms to finding the minimum
cost path in a directed weighted graph. Let v be a vertex and e
be an edge between the vertices of a directed weighted graph. We
associate a cost to each edge !(e). We want to find the minimum
cost path by moving from an origin vertex v0 to a destination ver-
tex vS . The cost of a path p(v0; vS) = fv0; ::; vSg is the sum of
its constituent edges


(p(v0; vS)) =
SX
s

!(vs) (13)

Suppose we already know the costs 
(v0; v�) from v0 to every
other vertex. Let’s say v� is the last vertex the path goes through
before vS . Then, the overall path must be formed by concatenat-
ing a path from v0 to v�, i.e. p(v0; v�), with the edge e(v�; vS).

Fig. 4. Each vertex represents a matrix index combination and
each edge is the corresponding matrix element for that index.

Further, the path p(v0; v�) must itself be a minimum cost path
since otherwise concatenating the minimum cost path with edge
e(v�; vS) would decrease the cost of the overall path. Another ob-
servation is that 
(v0; v�) must be equal or less than 
(v0; vS),
since 
(v0; vS) = 
(v0; v�)+!(v�; vS) and we are assuming all
edges have non-negative costs, i.e. !(v�; vS) � 0. Therefore if we
only know the correct value of 
(v0; v�) we can find a minimum
cost path.

We modified Dijkstra’s algorithm for this purpose. Let Q be
the set of active vertices whose minimum cost paths from v0 have
already been determined, and ~p(v) is a back pointer vector that
shows the neighboring minimum cost vertex of v. Then the itera-
tive procedure is given as

1. Set u0 = v0 Q = fu0g, 
(u0) = 0, ~p(v0) = v0, and
!(v) =1 for v 6= u0.

2. For each ui 2 Q: if v is a connected to ui, assign !(v) 
minf!(ui);
(ui) + !(v)g. If !(v) is changed, assign
~p(v) = ui and update Q Q [ v.

3. Remove ui from Q. If Q 6= ; go to step 2.

Then the minimum cost path p(v0; vs) = fv0; :::; vSg is obtained
by tracing back pointers by starting from the destination vertex vS
as vs�1 = ~p(vs). The algorithm takes time O(S2). As shown
in Fig. 4, the graph that is converted from the cross-correlation
matrix is directed such that a vertex vmn has directional edges to
vertices vm+1;n; vm;n+1; vm+1;n+1 only. Therefore, we do not
allow overlaps of the bin indices, and eliminate cyclic paths.

5. EXPERIMENTS AND CONCLUSION

We designed an experiment to evaluate the distortion compensa-
tion capability of the model function. We conducted this exper-
iment with several image-pairs. Each pair consists of a refer-
ence image and a distorted version of its illumination histogram as
in Fig.5-a,b. The histogram distortions were random, non-linear,
and non-parametric. After we computed the cross-correlation ma-
trix (Fig.5-c) and the model function (Fig.5-d), we transformed
the histogram of the distorted image (Fig.5-b) accordingly to ob-
tained the illumination corrected image (Fig.5-e). As visible in the
histogram graphics the model function was able to successfully
compensate for the distortions. The results of the other pairs con-
firmed this statement. The improvement is substantial even though
histogram operations are invariant to spatial transformations, and
thus have limited impact. Note that, no other distance metric can
give histogram distortions compensated distance. In a second ex-
periment, we used the Oulu dataset. The cameras acquired im-
ages under different lighting conditions, i.e. Planckian 2856K and
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Fig. 5. (a) A reference, and (b) an over-exposed image of the same
scene. (c) The cross-correlation matrix and the minimum cost path
(shown in yellow). The intensity of the red indicates the magnitude
of the bin distance, i.e. higher red strength corresponds smaller
distance. (d) (above) The intensity histograms of the input image
(black), of the over-exposed image (blue), and of the compensated
image (red). (below) Model function that maps the over-exposed
image to the original. (e) The compensation result.

2300K. Fig. 6-a shows sample pairs. Since each picture is taken
at a different time, there are appearance mismatches in addition to
the lighting and the camera difference. We computed the aggre-
gated cross-correlation matrices (Fig.6-b,c,d) for each color chan-
nel from 150 pairs. Using the extracted model functions, we cali-
brated the second camera to compensate radiometric distortions.
A sample test image pair is given in Fig. 6-e,f. As visible in
Fig.6-g, the non-parametric model function method successfully
achieve color compensation although the color distribution of the
second image is very different from the reference (attenuated blue
and biased red channels). Using larger datasets also improves the
accuracy of the model function.

We presented a novel inter-camera color calibration method
that uses a model function to determine how the color histograms
of images taken at each camera are correlated. Unlike the exist-
ing calibration approaches, our method does not require special,
uniformly illuminated color charts, does not compute individual
radiometric responses, does not depend on additional shape as-
sumptions of the brightness transfer functions, and does not in-
volve controlled exposure image sets. Furthermore, our method
can model non-linear, non-parametric distortions and inter-camera

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 6. (a) Training data: (First row) Sample reference-camera
database images acquired using Plankian 2856K light, (Second
row) corresponding images from a second-camera database which
are obtained using Planckian 2300K. Dataset is courtesy of Matti
Pietikinen, University of Oulu, Finland. Note that, the images are
not acquired at the same time instant which makes the calibration
more challenging. These databases are used to compute the cross-
correlation matrices of the red (b), green (c), and (d) blue channels.
(e) Test sample: an image from the reference-camera, and (f) cor-
responding image from the second camera. (g) The result image
that is the image (f) is automatically compensated to match the
color distribution of the image (e).

color transfer functions, and it can handle cameras that have dif-
ferent color dynamic ranges. As a future work, we plan to apply
this method to recognize objects in a non-overlapping field of view
multi-camera system.
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